

Revision Geometry

Parallel and perpendicular

Rule 1

Parallel and perpendicular

Rule 2

Through a given point we can draw only one parallel (perpendicular) line to a a given line.

Null angle: 0°

Null angle: 0°

Acute angle: between 0° and 90°

Null angle: 0°

Acute angle: between 0° and 90°

Right angle: 90°

Null angle: 0°

Acute angle: between 0° and 90°

right angle: 90°

Obtuse angle: between 90° and 180°

Null angle: 0°

Acute angle: between 0° and 90°

right angle: 90°

Obtuse angle: between 90° and 180°

straight angle: 180°

Complementary angles

Sum of the angles is equal to 90°.

Each angle is called complement of the second angle.

Supplementary angles

Sum of the angles is equal to 180°.

Each angle is called supplement of the second angle.

Triangles

BSA

Isosceles triangle

Equilateral triangle

Triangles

Right triangle

Right isosceles triangle

$$AC = AB\sqrt{2}$$
$$AB = \frac{AC}{\sqrt{2}}$$

Triangles

BSA BE SMART ACADEMY

Semi equilateral triangle

$$BC = \frac{hyp}{2} = \frac{AC}{2}$$
 (opposite to 30°)
 $AB = \frac{hyp\sqrt{3}}{2} = \frac{AC\sqrt{3}}{2}$ (opposite to 60°)

BSA BE SMAIT ACADEMY

Height (altitude)

Median

Median

$$BG = \frac{2}{3}BI$$

$$GI = \frac{1}{3}BI$$

$$BG = 2GI$$

Bisector

BSA BE SMAIT ACADEMY

Bisector

If M belongs to the bisector then, M is equidistant from the sides of the angle.

Conversely, if M is equidistant from the sides of the angle, then M belongs to the bisector of this angle.

Perpendicular bisector

BSA

Perpendicular bisector

Center of the circle circumscribed

BSA BESMAIT ACADEMY

Perpendicular bisector

Any point M on the perpendicular bisector of a segment is equidistant from the vertices of this segment.

Conversely, if any point equidistant from the vertices of a segment, then this point belongs to the perpendicular bisector of this segment.

Triangle

$$P=S1+S2+S3$$

$$A=\frac{base \times height}{2}$$

Square

$$P=4\times S$$
 $A=S^2$

BSA BE SMAIT ACADEMY

Rectangle

Parallelogram

P=2(L+W) A=base×height

BSA BE SMART ACADEMY

Trapezoid

$$MB = \frac{SB + BB}{2}$$
P=sum of sides
$$A = \frac{SB + BB}{2} \times height$$

parallelogram

- Opposite sides are equal
- Opposite sides are parallel
- Diagonals bisect each other
- Opposite angles are equal.
- * Adjacent angles are supplementary

Rectangle

- Opposite sides are equal
- Opposite sides are parallel
- Diagonals bisect each other and equal
- 4 right angles

Rhombus

- ❖ 4 equal sides
- Opposite sides are parallel
- Diagonals bisect each other and perpendicular
- Diagonals are bisectors.
- Opposite angles are equal
- Adjacent angles are supplementary

Square

- ❖ 4 equal sides
- Opposite sides are parallel
- Diagonals bisect each other, equal and perpendicular.
- 4 right angles
- Diagonals are bisectors

Trapezoid

Two opposite sides are parallel

How to prove?

Opposite sides are equal

Opposite sides are parallel

Two Opposite sides are parallel and equal

Diagonals bisect each other

Parallelogram+diagonals are perpendicular = rhombus

Parallelogram+2 adjacent sides are equal = rhombus

Rhombus + 1right angle=square

Rhombus + equal diagonals=square

parallelogram

Parallelogram+1 right angle= rectangle

Parallelogram+equal diagonals= rectangle

Rectangle+2 adjacent equal sides=square

Rectangle+perpendicular diagonals=square

